Search results for "Data Fusion"
showing 10 items of 40 documents
Multispectral high resolution sensor fusion for smoothing and gap-filling in the cloud
2020
Remote sensing optical sensors onboard operational satellites cannot have high spectral, spatial and temporal resolutions simultaneously. In addition, clouds and aerosols can adversely affect the signal contaminating the land surface observations. We present a HIghly Scalable Temporal Adaptive Reflectance Fusion Model (HISTARFM) algorithm to combine multispectral images of different sensors to reduce noise and produce monthly gap free high resolution (30 m) observations over land. Our approach uses images from the Landsat (30 m spatial resolution and 16 day revisit cycle) and the MODIS missions, both from Terra and Aqua platforms (500 m spatial resolution and daily revisit cycle). We implem…
A multisensor fusion approach to improve LAI time series
2011
International audience; High-quality and gap-free satellite time series are required for reliable terrestrial monitoring. Moderate resolution sensors provide continuous observations at global scale for monitoring spatial and temporal variations of land surface characteristics. However, the full potential of remote sensing systems is often hampered by poor quality or missing data caused by clouds, aerosols, snow cover, algorithms and instrumentation problems. A multisensor fusion approach is here proposed to improve the spatio-temporal continuity, consistency and accuracy of current satellite products. It is based on the use of neural networks, gap filling and temporal smoothing techniques. …
Cost-Effective eHealth System Based on a Multi-Sensor System-on-Chip Platform and Data Fusion in Cloud for Sport Activity Monitoring
2018
eHealth systems provide medical support to users and contribute to the development of mobile and quality health care. They also provide results on the prevention and follow-up of diseases by monitoring health-status indicators and methodical data gathering in patients. Telematic management of health services by means of the Internet of Things provides immediate support and it is cheaper than conventional physical presence methods. Currently, wireless communications and sensor networks allow a person or group to be monitored remotely. The aim of this paper is to develop and assess a system for monitoring physiological parameters to be applied in different scenarios, such as health or sports.…
An adaptive multi-rate system for visual tracking in augmented reality applications
2016
The visual tracking of an object is a well-known problem, and it involves many fields of applications. Often a single sensor, the camera, could not provide enough information in order to track the whole object trajectory due to a low updating rate; therefore a multi-sensor system, based also on inertial measurements, could be necessary to improve the tracking accuracy. This leads to the fundamental question: how can information from different sensors be combined when they work at different rates? In this paper an approach based on recursive parameter estimation focusing on multi-rate situations is suggested. The problem is here formulated as the state-of-the-art problem of the visual tracki…
Multi-model ensemble simulations of olive pollen distribution in Europe in 2014: current status and outlook
2017
"Çalışmada 29 yazar bulunmaktadır. Bu yazarlardan sadece Bursa Uludağ Üniversitesi mensuplarının girişleri yapılmıştır” The paper presents the first modelling experiment of the European-scale olive pollen dispersion, analyses the quality of the predictions, and outlines the research needs. A 6-model strong ensemble of Copernicus Atmospheric Monitoring Service (CAMS) was run throughout the olive season of 2014, computing the olive pollen distribution. The simulations have been compared with observations in eight countries, which are members of the European Aeroallergen Network (EAN). Analysis was performed for individual models, the ensemble mean and median, and for a dynamically optimised c…
Traitement de données RGB et Lidar à extrêmement haute résolution: retombées de la compétition de fusion de données 2015 de l'IEEE GRSS - Partie A / …
2016
International audience; In this paper, we discuss the scientific outcomes of the 2015 data fusion contest organized by the Image Analysis and Data Fusion Technical Committee (IADF TC) of the IEEE Geoscience and Remote Sensing Society (IEEE GRSS). As for previous years, the IADF TC organized a data fusion contest aiming at fostering new ideas and solutions for multisource studies. The 2015 edition of the contest proposed a multiresolution and multisensorial challenge involving extremely high-resolution RGB images and a three-dimensional (3-D) LiDAR point cloud. The competition was framed in two parallel tracks, considering 2-D and 3-D products, respectively. In this paper, we discuss the sci…
Fuzzy Fusion in Multimodal Biometric Systems
2007
Multimodal authentication systems represent an emerging trend for information security. These systems could replace conventional mono-modal biometric methods using two or more features for robust biometric authentication tasks. They employ unique combinations of measurable physical characteristics: fingerprint, facial features, iris of the eye, voice print, hand geometry, vein patterns, and so on. Since these traits are hardly imitable by other persons, the aim of these multibiometric systems is to achieve a high reliability to determine or verify person's identity. In this paper a multimodal biometric system using two different fingerprints is proposed. The matching module integrates fuzzy…
An integrated approach for high spatial resolution mapping of water and carbon fluxes using multi-sensor satellite data
2012
In the last years, modeling of surface processes - such as water, energy and carbon budgets, as well as vegetation growth- seems to be focused on integrated approaches that combine aspects of hydrology, biology and meteorology into unified analyses. In this context, remotely sensed data often have a core role due to the cross-cutting impact of this novel source of spatially distributed information on all these research areas. However, several applications - such as drought monitoring, yield forecasting and crop management - require spatially detailed products at sub-field scales, which can be obtained only with support of adequately fine resolution remote sensing data (< 100 m). In particul…
Food Tray Sealing Fault Detection in Multi-Spectral Images Using Data Fusion and Deep Learning Techniques
2021
A correct food tray sealing is required to preserve food properties and safety for consumers. Traditional food packaging inspections are made by human operators to detect seal defects. Recent advances in the field of food inspection have been related to the use of hyperspectral imaging technology and automated vision-based inspection systems. A deep learning-based approach for food tray sealing fault detection using hyperspectral images is described. Several pixel-based image fusion methods are proposed to obtain 2D images from the 3D hyperspectral image datacube, which feeds the deep learning (DL) algorithms. Instead of considering all spectral bands in region of interest around a contamin…
Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain
2015
Abstract Lake eutrophication is a critical issue in the interplay of water supply, environmental management, and ecosystem conservation. Integrated sensing, monitoring, and modeling for a holistic lake water quality assessment with respect to multiple constituents is in acute need. The aim of this paper is to develop an integrated algorithm for data fusion and mining of satellite remote sensing images to generate daily estimates of some water quality parameters of interest, such as chlorophyll a concentrations and water transparency, to be applied for the assessment of the hypertrophic Albufera de Valencia. The Albufera de Valencia is the largest freshwater lake in Spain, which can often pr…